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† Dipartimento di Fisica, Università di Roma ‘La Sapienza’ and Istituto Nazionale Fisica della
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Abstract. We analyse the properties of the energy landscape of finite-size fully connectedp-spin-
like models. In the thermodynamic limit the high-temperature phase is described by the schematic
mode-coupling theory of supercooled liquids. In this limit, the barriers between different basins are
infinite below the critical dynamical temperature at which the ergodicity is broken in infinite time.
We show that finite-size fully connectedp-spin-like models, where activated processes are possible,
exhibit properties typical of real supercooled liquid when both are near the critical glass transition.
Our results support the conclusion that fully connected p-spin-like models are the natural statistical
mechanical models for studying the glass transition in supercooled liquids.

1. Introduction

In recent years a significant effort has been made to understand the slow relaxation dynamics
observed in many, apparently unrelated, systems such as structural glasses, spin glasses,
disordered or granular materials and proteins, among others. In such systems the characteristic
relaxation time may change by many orders of magnitude if the external parameters, e.g. the
temperature T , are slightly varied. As a consequence, correlations display non-exponential
behaviour, and equilibration processes slow down, giving rise to non-equilibrium phenomena
known as ageing.

The common denominator which makes all these systems display similar behaviour near
the (dynamical) critical temperature is the complexity of the energy landscape. The trajectory
of the representative point in the configuration space can be viewed as a path on a multi-
dimensional potential energy surface [1]. The dynamics is therefore strongly influenced by
the topography of the potential energy landscape: local minima, barriers, basins of attraction
and other topological properties all influence the dynamics.

The potential energy surface of a supercooled liquid contains a large number of local
minima, called inherent structures (IS) by Stillinger [2]. All states that under local energy
minimization will flow into the same IS define the basin of the IS (valley). With this picture
in mind the time evolution of the system can be seen as the result of two different processes:
thermal relaxation into basins (intra-basin motion) and thermally activated crossing of potential
energy barriers between different basins (inter-basin motion). When the temperature is lowered
to a value of the order of the critical mode-coupling theory (MCT) temperature TMCT the inter-
basin motion slows down and the relaxation dynamics is dominated by the slow thermally
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activated crossing of potential energy barriers [3]. If the temperature is further reduced the
relaxation time eventually becomes of the same order as the observation time and the system
falls out of equilibrium since there is not enough time to cross barriers and equilibrate. This
defines the ‘experimental’ glass transition temperature Tg .

The regime between TMCT and Tg cannot be described by the MCT since it neglects
activated processes responsible for barrier crossing. In MCT the relaxation time diverges at
TMCT , leading to Tg = TMCT , and the dynamics remains confined to a single basin forever.
Attempts to overcome these difficulties in MCT have been made, but probably the clearest
picture comes from some spin-glass models. The essential features of MCT for glass-forming
systems are also common to some fully connected spin-glass models [4], the most well known
being the spherical p-spin spin-glass model [5, 6]. We shall call these models mean-field
p-spin-like-glass models. The central point is that near TMCT the behaviour of the system is
mainly due to the IS organization (density, basins, barriers and so on), so all systems with
similar IS structure should exhibit similar critical behaviour.

In the thermodynamic limit the high-temperature phase—paramagnetic in the spin-glass
language and liquid in glass language—of a mean-field p-spin-like model is described by the
schematic MCT for supercooled liquids [5, 7]. As a consequence, at the critical temperature,
called TD in p-spin language, an ergodic–non-ergodic transition takes place. Below this
temperature the system is dynamically confined to a metastable state (a basin) [8] since
relaxation to true equilibrium can only take place via activated processes, absent in mean-
field models. Therefore in mean-field models, similar to what happens in MCT, at TD the
relaxation time diverges. For these systems, nevertheless, it is known that the true equilibrium
transition to a low-temperature phase occurs below TD at the static critical temperature
Tc, also denoted by T1rsb [6]. This is the analogue of the Kauzmann temperature TK for
liquids. The glass transition temperature Tg of real systems sits somewhere in between Tc
and TD . This transition, obviously, cannot be reached even in infinite time in mean-field
models.

Despite these difficulties, mean-field models, having the clear advantage of being
analytically tractable, have been frequently used to study the properties of fragile glassy
systems, especially between the dynamical temperature TD and the static temperature Tc where
a real thermodynamic phase transition driven by the collapse of the configurational entropy
takes place. The picture that emerges is however not complete since activated process cannot
be captured by mean-field models. Therefore the relevance of mean-field results for real
systems it is still not completely established. Let us also remark that, despite the large amount
of analytical work devoted to the study of the static as well as dynamical properties in the
N → ∞ limit, much less is known concerning the finite-N behaviour.

In this work we investigate numerically finite-size fully connected p-spin-like models,
where activated processes are present. Comparing our results with the observed behaviour of
supercooled liquids near TMCT we conclude that, once activated process are allowed, mean-
field p-spin-like models are extremely valuable for achieving a deep understanding of the glass
transition in real systems.

All results reported here are for the Ising-spin random orthogonal model (ROM) [10,11];
however, similar results are obtained using other p-spin-like models, for example the
Bernasconi model and the Ising-p-spin model. The advantage of the ROM lies in its interaction
term which is two-body, as opposed to the p-body interaction of p-spin models, reducing
computer memory problems. Moreover, the use of Ising spins instead of continuous spins, as
for the spherical p-spin model, allows for a larger configuration entropy and faster algorithms.
Preliminary results for the spherical p-spin model are in qualitative agreement with those
reported here.
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2. Thermodynamics of inherent structures: how to evaluate the configurational entropy

The random orthogonal model is defined by the Hamiltonian [10, 11]

H = −2
∑
ij

Jij σiσj (1)

where σi = ±1 are N Ising-spin variables, and Jij is a N ×N random symmetric orthogonal
matrix with Jii = 0. Numerical simulations are performed using the Monte Carlo method
with the Glauber algorithm. For N → ∞ this model has the same thermodynamic properties
as the p-spin model: a dynamical transition at TD = 0.536, with threshold energy per spin
eth = Eth/N = −1.87, and a static transition at Tc = 0.25, with critical energy per spin
e1rsb = −1.936 [10, 11].

The TAP analysis [8, 11] reveals that the phase space visited is composed of an
exponentially large (with N ) number of different basins, each labelled by the value of the
energy density e at T = 0, separated by infinitely large (for N → ∞) barriers. The free
energy of the e-TAP solution describes the thermodynamics within the basins labelled by e,
and at T = 0 coincides with the local minimum potential energy, i.e., the IS of the system.
The dynamical transition is associated with the IS having the largest basin of attraction for
N → ∞, while the static transition is associated with the IS having the lowest accessible free
energy [8, 12].

In the mean-field limit, the allowed values of e are between e1rsb and eth. Solutions
with e larger than eth are unstable (saddles), while solutions with e smaller than e1rsb have
negligible statistical weight. Moreover in the N → ∞ limit the IS with e = eth attract most
(exponentially with N ) of the states and dominate the behaviour of the system. Other IS are
irrelevant for N → ∞.

For finite N the scenario is different since not only do the basins of the IS with e < eth
acquire statistical weight, but also it may happen that solutions with e > eth and few negative
directions (saddles with few downhill directions) become stable, simply because there are not
enough degrees of freedom for hitting them.

To get more insight into the IS structure of finite systems we follow Stillinger and
Weber [13] and decompose the partition sum into a sum over basins of different IS and a
sum within each basin. Collecting all IS with the same energy e, denoting by exp[Nsc(E)] de
the number of IS with energy between e and e + de and shifting the energy of each basin to
that of the associated IS, the partition sum can be rewritten as [13]

ZN(T ) �
∫

de expN [−βe + sc(e)− βf (β, e)] (2)

where f (β, e) can be seen as the free-energy density of the system when confined in one of
the basins associated with the IS of energy e. The function sc(e) is the configurational entropy
density, also called the complexity. From equation (2) we easily obtain the probability that an
equilibrium configuration at temperature T = 1/β lies in a basin associated with an IS with
energy between e and e + de:

PN(e, T ) = expN [−βe + sc(e)− βf (β, e)] /ZN(T ). (3)

Taking the N → ∞ limit we recover the mean-field results [8, 10, 11].
From the partition function (2) we can easily compute the average internal energy density

given by u(T ) = 〈e + ∂(βf )/∂β〉 = 〈e(T )〉 + 〈#e(T )〉. The first term is the average energy of
the IS relevant for the thermodynamics at temperature T , while the second term is the contrib-
ution from fluctuations inside the basin of the IS. The average is taken with the weight (3).

Since we are interested in the IS structure we shall concentrate on 〈e(T )〉. In the limit
N → ∞ the only relevant IS are those with e = eth, and limN→∞〈e(T )〉 = eth for any
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T > TD . To measure 〈e(T )〉 for finite N we perform the following experiment. First we
equilibrate the system at a given temperature T ; then starting from an equilibrium configuration
we instantaneously quench it down to T = 0. This is done by decreasing the energy along
the steepest-descent path. In this way we can identify the energy of the IS visited by the
equilibrium trajectory. The experiment is repeated several times starting from uncorrelated
equilibrium configurations at T and the average IS energy is computed. In figure 1 we report
〈e(T )〉 as a function of temperature T for system sizes N = 48, 300 and 1000. As expected,
as N increases 〈e(T )〉 tends towards eth. From the numerical data we found that the plateau
energy approaches eth with the power law 〈eplateau〉 − eth ∼ N−0.2; see the inset of figure 1.
Note that since N is finite we can also equilibrate the system below TD , down to the glassy
transition temperature Tg(N), about 0.35 for N = 48 and 0.5 for N = 300, below which the
system falls out of equilibrium†.
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Figure 1. The temperature dependence of 〈e(T )〉 for N = 48 (squares), N = 300 (circles) and
N = 1000 (triangles). The average is over 103 different equilibrium configurations at temperature
T . The horizontal line is the N → ∞ limit. The arrows indicate the critical temperatures TD and
Tc (see the text). The dotted line is the curve obtained from the configurational entropy for large
N . Inset: the size dependence of 〈e(T = 3)〉 as a function N−α with α = 0.2 extrapolated down
to the N → ∞ theoretical result −1.87 (triangle).

The figure shows that for finite N and T not too close to TD the thermodynamics is
dominated by IS with e > eth. This is more evident from the (equilibrium) probability
distribution of e since it is centred about 〈e(T )〉, indicating that IS with e � 〈e(T )〉 have the
largest basins. This scenario has also been observed in real glass-forming systems [14–18].

From the knowledge of the IS energy distribution we can reconstruct the complexity sc(e).
In the temperature range where equation (3) is valid, we have

sc(e) = lnPN(e, T ) + βe + βf (β, e) + lnZN(T ). (4)

If the energy dependence of f (β, e) can be neglected, then it is possible to superimpose the
curves for different temperatures. The resulting curve is, except for an unknown constant,
the complexity sc(e). The curves obtained for system sizes N = 48 and 300 and various

† Strictly speaking there is no Tg for finite systems. We define Tg as the temperature below which the system cannot
be equilibrated in the longest Monte Carlo run.
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temperatures between T = 0.4 and T = 1.0 are shown in figure 2(a). The data collapse
is rather good for e < −1.8. Above that, the curves cannot be superimposed any longer,
indicating that the energy dependence of f (β, e) cannot be neglected. For liquid this is called
the anharmonic threshold [19,20]. To compare the result with the known analytical predictions
for the ROM, each curve in the figure has been translated to maximize the overlap with the
theoretical prediction for sc(e) [11]. The dotted line is the quadratic best fit from which we can
estimate the critical energy ec � −1.944 as the value where sc(e) vanishes, in good agreement
with the theoretical result e1rsb = −1.936 [11].
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Figure 2. (a) Configurational entropy as a function of energy. The data are for system sizesN = 48
(empty circles) and N = 300 (filled circles), and temperatures T = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
1.0. For each curve the unknown constant has been fixed to maximize the overlap between the data
and the theoretical result [11]. The line is the quadratic best fit. (b) Configurational entropy density
as a function of temperature. The line is the result from the best fit of sc(e) while the symbols are
the results from the temperature integration of equation (6) for N = 48 (empty circles), N = 300
(empty triangles) and N = 1000 (filled circles).

The direct consequence of the fact that f (β, e) � f (β) for e < −1.8 is that in this range
the partition function can be written as the product of an intra-basin† contribution (exp(−Nβf ))
and a configurational contribution which depends only on the IS energy-density distribution.
The system can then be considered as composed of two independent subsystems: the intra-
basin subsystem describing the equilibrium when confined within basins, and the IS subsystem
describing equilibrium via activated processes between different basins. As the temperature
is lowered and/orN increased the two processes get more separated in time and the separation
into two subsystems becomes more and more accurate. This is a scenario typical of supercooled

† The intra-basin contribution for liquid is called ‘vibrational’ since it is associated with vibrations near the bottom
of the basin.
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liquids near the MCT transition [3, 21].
The form of f (β) for the specific system can be computed by studying the motion near

the IS, for example using a harmonic approximation [19,20]. However, this usually gives only
a small correction to the thermodynamic quantities for T close to TD [19, 20] and we do not
consider it here.

Another important consequence of the separation into two subsystems is that in
equation (3) f (β, e) can be neglected since it cancels with the equal term coming from the
denominator. Therefore from the knowledge of sc(e) we can easily compute the average IS
energy density 〈e(T )〉. For largeN this is given by the saddle-point estimate; see equation (3):

max
e

[−βe + sc(e)] . (5)

The result obtained using for sc(e) the quadratic best fit of figure 2(a) is the dotted line shown
in figure 1. The agreement with the direct numerical data is good already for N = 300.
From the form of 〈e(T )〉 for large N we can identify the static critical temperature Tc � 0.3
as the temperature below which 〈e(T )〉 remains constant, not far from the theoretical result
Tc = 0.25 [11].

To have a check of our results we have computed the configurational entropy density using
a different approach [19]. When the IS subsystem is in thermal equilibrium, the temperature
dependence of the configurational entropy density can be evaluated from the thermodynamic
relation

dsc(T )

d〈e(T )〉 = 1

T
(6)

by integrating the T -dependence of d〈e(T )〉/T . Using the data of figure 1 we obtain the curves
shown in figure 2(b). The line is the result valid for large N obtained from the quadratic best
fit of sc(e) (figure 2(a)). The agreement for N = 300 and 1000 is rather good. Note that
increasing N reduces the IS energy range explored by the system for a given fixed Monte
Carlo simulation length. This in turn reduces the temperature range in figure 2(b).

To have a statistical description of the energy landscape we also investigated cross
correlations among IS and equilibrium configurations at T . It emerges that while the
equilibrium configuration is highly correlated with the corresponding IS, different IS are uncor-
related. Moreover the probability distribution of IS–IS overlaps is a Gaussian centred at zero
with a variance which goes to zero as N increases. The analysis of a triplet of IS does not
reveal any particular organization of states. This result, characteristic of the random-energy
model [22], is known to hold also for multispin-interaction spin-glass models.

3. Non-equilibrium behaviour: the role of activated processes

More information on the IS structure can be obtained from non-equilibrium relaxation
processes. To study the non-equilibrium dynamics we quench the system at time zero from an
initial equilibrium configuration at temperature Ti > Tg to a final temperature Tf < Tg and
study the evolution of the average IS energy per spin 〈e(t)〉 as a function of time [23]. This
is done by regularly quenching the system down to T = 0 to calculate the instantaneous IS
energy. The result for a system of N = 300 spins and initial temperature Ti = 3 is shown
in figure 3(b) for final temperature Tf = 0.1, 0.2, 0.3 and 0.4. The average is over different
equilibrium initial configurations at Ti .

The analysis of the figure reveals that the relaxation process can be divided into two
different regimes: a first regime independent of Tf ; and a second regime independent of both
Ti and Tf . The final temperature Tf controls the crossover between the two regimes. A similar
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Figure 3. Average inherent-structure energy in equilibrium as a function of temperature (a) and as
a function of time during the non-equilibrium process (b). The system size is N = 300, Ti = 3.0
and (top to bottom) Tf = 0.1, 0.2, 0.3 and 0.4 (panel (b)).

behaviour has been observed in molecular dynamics simulations of supercooled liquids [18].
We note that in our case since we use discrete variables, and hence a faster dynamics, we do
not have the very early regime observed in [18] where 〈e(t)〉 is almost independent of t .

The two regimes are associated with different relaxation processes. In the first part the
system has enough energy and the relaxation is mainly due to path search out of basins
through saddles of energy lower than kBTf . This part depends only on the initial equilibrium
temperature Ti since it sets the initial phase-space region. Different Ti lead to different power
laws. In particular, relaxation must slow down as Ti decreases since we expect lower states
to be surrounded by higher barriers. This expectation is supported by our numerical data. In
figure 4 we report the behaviour of 〈e(t)〉 as a function of time for different initial temperatures.
The slowing down of the first regime is clearly seen.

During this process the system explores deeper and deeper valleys (basins) while
decreasing its energy. The process stops when all barrier heights become of O(kBTf ). From
then on the relaxation proceeds only via activated process. A first consequence is that the
lower the final temperature Tf , the shorter the first relaxation, in agreement with our findings
(see figures 3 and 4).

The analysis of the distance between the instantaneous system state and the corresponding
IS, counting the number of single spin flips needed to reach the IS, reveals that for all times the
systems stays in configurations a few spin flips away from an IS, the number ranging from 8–9
for short times to 1–2 at larger times. A similar study starting from equilibrium configurations
at temperature Te(〈e(t)〉) evaluated by comparing panels (a) and (b) of figure 3 [18] leads
to similar numbers. We thus conclude that during relaxation the ageing system explores the
same type of minima (and basins) as are visited in equilibrium at temperature Te. The direct
consequence is that once the system has reached the activated regime there cannot be a memory
of the initial Ti , and all curves with different Ti but same Tf should collapse for large time
(figure 4).
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Figure 4. Average inherent-structure energy as a function of time for initial temperatures Ti = 3.0,
2.0 and 0.9, final temperatures Tf = 0.1, 0.2 and 0.3. The average is over 300 initial configurations.
The system size is N = 300. The line denotes the slope −0.0025.

To gain more confidence in this picture of relaxation we have studied the distance from
the instantaneous configurations and the nearest saddle to a different basin. This is done by
counting the number of spin flips needed to reach the saddle through the less steep path, i.e.,
the path that gives the minimum increase of energy at each spin flip. A typical result is shown
in figure 5. Note the strong slowing down at the ‘kink’ where the relaxation law changes.

Finally in figure 6 we show the average IS energy of IS reached by crossing the saddle
nearest to the instantaneous configuration. Note that for short time the crossing leads to IS
with similar energies. For comparison we also report the analogous curve obtained starting
from the instantaneous IS. In this case the energy is much lower. The picture changes near the
kink where the two curves merge. Moreover for longer times both curves are above the true
relaxation curve, indicating that the system does not relax passing through the less steep path.
Indeed this is a very special path which may be difficult to find. Higher saddles require higher
activation energy but can be found more easily and dominate the relaxation dynamics. More
detailed studies of barrier heights and exit times are in progress.

4. Conclusions

To summarize, in this work we have shown that finite-size mean-field p-spin-like models are
good candidates for studying the glass transition. The key point is that near the glass transition
the thermodynamics of the systems is dominated by the IS distributions; therefore all systems
with similar IS distributions should show similar behaviour. Finite-size mean-field p-spin-
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Figure 5. (a) Number of single spin flips required to reach the nearest saddle from the IS as a
function of t . (b) 〈e(t)〉 as a function of t during the non-equilibrium process. The system size is
N = 300; Ti = 3.0 and Tf = 0.2.
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Figure 6. IS energy as a function of t for N = 300, Ti = 3.0 and Tf = 0.2. The average
is over 300 initial configurations. Symbols key: circles: IS energy from the instantaneous
configuration; downward-pointing triangles: IS energy crossing the nearest saddle to the
instantaneous configuration; upward-pointing triangles: IS energy crossing the nearest saddle to
the instantaneous IS.

like models have the double advantage of being analytically tractable for N → ∞ and easily
simulated numerically for finite N , offering good models for analysing the glass transition.
Finally we note that the analysis presented in this paper opens the way for the study of generic
glass and spin-glass models (such as the Edwards–Anderson model) where a careful study of
the thermodynamics associated with the IS has never been considered.
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